Step of Proof: neg_mul_arg_bounds
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
neg
mul
arg
bounds
:
1.
a
:
2.
b
:
3. (((-
a
) *
b
) > 0)
((((-
a
) > 0) & (
b
> 0))
(((-
a
) < 0) & (
b
< 0)))
((
a
*
b
) < 0)
(((
a
< 0) & (
b
> 0))
((
a
> 0) & (
b
< 0)))
latex
by
InteriorProof
((ReplaceWithEqv (TryC (HigherC IntSimpC))
((-(
a
*
b
)) > (-0))
((-(
a
*
b
)) > (-0
((((-
a
) > (-0)) & (
b
> 0))
(((-
a
) < (-0)) & (
b
< 0)))
3)
3)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
3)
)) (first_tok :t) inil_term)))
latex
1
:
1:
3. ((-(
a
*
b
)) > (-0))
((((-
a
) > (-0)) & (
b
> 0))
(((-
a
) < (-0)) & (
b
< 0)))
1:
((
a
*
b
) < 0)
(((
a
< 0) & (
b
> 0))
((
a
> 0) & (
b
< 0)))
.
Definitions
P
Q
,
T
,
P
Q
,
P
Q
,
,
True
,
t
T
,
P
&
Q
,
P
Q
,
i
>
j
,
x
:
A
.
B
(
x
)
Lemmas
true
wf
,
squash
wf
,
iff
wf
,
gt
wf
origin